SANTOS, C. P. ; NASCIMENTO, MARIÁ C.V.

 Graph clustering is a challenging pattern recognition problem whose goal is to identify vertex partitions with high intra-group connectivity. This paper investigates a bi-objective problem that maximizes the number of intra-cluster edges of a graph and minimizes the expected number of inter-cluster edges in a random graph with the same degree sequence as the original one. The difference between the two investigated objectives is the definition of the well-known measure of graph clustering quality: the modularity. We introduce a spectral decomposition hybridized with an evolutionary heuristic, called MOSpecG, to approach this bi-objective problem and an ensemble strategy to consolidate the solutions found by MOSpecG into a final robust partition. The results of computational experiments with real and artificial LFR networks demonstrated a significant improvement in the results and performance of the introduced method in regard to another bi-objective algorithm found in the literature. The crossover operator based on the geometric interpretation of the modularity maximization problem to match the communities of a pair of individuals was of utmost importance for the good performance of MOSpecG. Hybridizing spectral graph theory and intelligent systems allowed us to define significantly high-quality community structures.

LINK: http://dx.doi.org/10.1016/j.eswa.2019.112911